Configuration

Define the data classes using Pydantic, making it possible to configure the chat application and do input validation.

Import statement

from gradiochat.config import *

Some lessons and clarification about the used code

  1. Pydantic vs Dataclasses: Pydantic creates classes similar to Python’s dataclasses but with additional features. The key differences are that Pydantic provides data validation, type coercion, and more robust error handling. It will automatically validate data during initialization and conversion.
  2. Pydantic and typing: Pydantic leverages Python’s standard typing system but adds its own validation on top. It uses Python’s type hints to know what types to validate against.
  3. The “…” placeholder: The ellipsis (…) is a special value in Pydantic that indicates a required field. It means “this field must be provided when creating an instance” - there’s no default value. When you create a ModelConfig instance, you’ll need to provide a value for model_name.
  4. @property usage: The @property decorator creates a getter method that’s accessed like an attribute. In our case, api_key looks like a normal attribute but when accessed, it runs the method to retrieve the value from environment variables. This is a clean way to avoid storing sensitive information in the object itself.
  5. Field from pydantic can be used to add extra information and metadata to inform the reader and/or do data validation.

The configuration for the workings of the LLM chatbot

ModelConfig

First the configuration for the LLM model to use in the ModelConfig.


ModelConfig

 ModelConfig (model_name:str, provider:str='huggingface',
              api_key_env_var:Optional[str]=None,
              api_base_url:Optional[str]=None, temperature:float=0.7,
              max_completion_tokens:int=1024, top_p:float=0.7,
              top_k:int=50, frequency_penalty:float=0,
              stop:Optional[List[str]]=['\nUser:', '<|endoftext|>'],
              stream:Optional[bool]=None)

Configuration for the LLM model

ModelConfig

Configuration for the LLM model

Variable Type Default Details
model_name str PydanticUndefined Name or path of the model to use
provider str ‘huggingface’ Model provider (huggingface, openai, etc)
api_key_env_var Optional[str] None Environment variable name for API key
api_base_url Optional[str] None Base URL for API reqeuest
temperature float 0.7 Temperature for generation
max_completion_tokens int 1024 Maximum tokens to generate
top_p float 0.7 Adjust the number of choices for each predicted token [0-1]
top_k int 50 Limits the number of choices for the next predicted token. Not available for OpenAI API
frequency_penalty float 0 Reduces the likelihood of repeating prompt text or getting stuck in a loop [-2 -> 2]
stop Optional[list[str]] [‘:’, ‘<|endoftext|>’] Sequences to stop generation
stream Optional[bool] None If set to true, the model response data will be streamed to the client as it is generated using server-sent events.

Message config

Next the configuration of the Message system


Message

 Message (role:Literal['system','user','assistant'], content:str)

A message in a conversation

Message

A message in a conversation

Variable Type Default Details
role Literal[system, user, assistant] PydanticUndefined Role of the message sender
content str PydanticUndefined Content of the message

Chat config

Then the configuration for the chat implementation. Making sure the application can handle: - system prompt - context if applicable - a start ‘user’ prompt if applicable - user input

The other settings that are available in this class can easily be infered from the description in the ChatAppConfig class itself.


ChatAppConfig

 ChatAppConfig (app_name:str, description:str='', system_prompt:str,
                starter_prompt:Optional[str]=None,
                context_files:List[pathlib.Path]=[],
                model:__main__.ModelConfig, theme:Optional[Any]=None,
                logo_path:Optional[pathlib.Path]=None,
                show_system_prompt:bool=True, show_context:bool=True)

Main configuration for a chat application

ChatAppConfig

Main configuration for a chat application

Variable Type Default Details
app_name str PydanticUndefined Name of the application
description str ’’ Description of the application
system_prompt str PydanticUndefined System prompt for the LLM
starter_prompt Optional[str] None Initial prompt to start the conversation
context_files list[Path] [] List of markdown files for additional context
model ModelConfig PydanticUndefined (see ModelConfig table)
theme Optional[Any] None Gradio theme to use
logo_path Optional[Path] None Path to logo image
show_system_prompt bool True Whether to show system prompt in UI
show_context bool True Whether to show context in UI

An example configuration for a chat application:

# Eval set to false, because the api key is stored in .env and thus can't be found when
# nbdev_test is run
test_config = ChatAppConfig(
    app_name="Test App",
    system_prompt="You are a helpful assistant.",
    model=ModelConfig(
        model_name="gpt-3.5-turbo",
        api_key_env_var="TEST_API_KEY",
    )
)

print(test_config.model_dump_json(indent=2))

print(f"API Key available: {'Yes' if test_config.model.api_key else 'No'}")
{
  "app_name": "Test App",
  "description": "",
  "system_prompt": "You are a helpful assistant.",
  "starter_prompt": null,
  "context_files": [],
  "model": {
    "model_name": "gpt-3.5-turbo",
    "provider": "huggingface",
    "api_key_env_var": "TEST_API_KEY",
    "api_base_url": null,
    "temperature": 0.7,
    "max_completion_tokens": 1024,
    "top_p": 0.7,
    "top_k": 50,
    "frequency_penalty": 0.0,
    "stop": [
      "\nUser:",
      "<|endoftext|>"
    ],
    "stream": null
  },
  "theme": null,
  "logo_path": null,
  "show_system_prompt": true,
  "show_context": true
}
API Key available: Yes